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Summary

Near field pressure data are presented for an
unheated jet issuing from an underexpanded
sonic nozzle for two exit lip thicknesses of 0.200
and 0.625 nozzle diameters. Because both the
amplitude and the frequency of the screech
mechanism have been shown to be sensitive to
the initial nozzle exit geometry, the data
presented are at nozzle operating conditions
where screech is dominant in the acoustic
emission. Fluctuating measurements were
obtained on the nozzle exit surface as well as in
the acoustic near field. These measurements can
be used to better characterize the initial acoustic
shear layer excitation due to the natural screech
feedback process. Such a characterization would
be useful in the development of active control
methodologies, incorporated in the nozzle exit
plane, that can reduce the presence of screech.

Introduction

The acoustic emission from supersonic shock-
containing jets may be dominated by an intense
tonal component referred to as screech. Such a
domination is dependent on the thermodynamic
operating conditions of the nozzle and the angle
of measurement. The seminal work of Powell
[1] described screech as being associated with a
feedback process as follows: (a) an embryonic
disturbance is shed in the initial shear layer
region of the jet; (b) the disturbance is amplified
as it convects downstream; (c) the amplified
disturbance interacts with the shock cell system
causing plume oscillation; (d) the oscillation
produces sound; and (e) the sound propagates
upstream toward the nozzle exit and excites the
initial shear layer thus closing the feedback loop.

Experimental work [2, 3] suggest that free
shear flows contain organized wavelike structures
in addition to the random turbulent fluctuations.
Because the spatial magnitude of these structures
are of orders near that of the mean flow, they are
referred to as large-scale structures and also as

instability waves due to their local wavelike
characteristics [4]. Tam, Seiner and Yu [5]
introduced the use of linear spatial stability
theory to describe the relationship between
screech and the large scale turbulent structure of
the jet.

Seiner [6] indicates that the frequency of the
most highly amplified instability wave is the
same as that measured for screech. Thus, a better
understanding of the screech mechanism can be
derived from Schlieren investigations of the large
scale structures [7, 8, 9, 10] as well as with
acoustic measurements [9, 11, 12, 13, 14, 15].
The screech mechanism has been extensively
studied for a variety of nozzle geometries that
include rectangular [8, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 15], asymmetric [26, 20], multiple jet
[27, 28, 29, 30], and axisymmetric [1, 7, 31, 32,
33, 14].

Numerous investigations continue to exist to
reduce the presence of screech. These studies are
not purely academic: full scale studies [34] have
shown significant acoustic energy associated with
this noise mechanism causing, in some cases,
sonic fatigue of airborne structures [35]. To
facilitate their study of broadband shock
associated noise, Harper-Bourne and Fisher [36]
introduced tabs into the initial shear layer region
of the jet to reduce the screech “tones.” They
also performed investigations into the effects on
the screech amplitude of an acoustic reflector
placed in the nozzle exit plane. Denham [37]
demonstrates reductions in the screech amplitude
using acoustic excitation and Norum [38] shows
that screech can be modified by incorporating
slots in choked tube jets. More recently, Huang
et al. [39] are using electrostatic microactuators
to control screech.

The purpose of this report is to provide data
which can be used to better understand the initial
acoustic shear layer excitation due to the screech
feedback process. With this understanding,
future investigators will be in a better position to
modify the screech cycle via modifications to the
initial nozzle conditions.



Symbols
D inside diameter of the nozzle exit

M fully expanded Mach number based on
nozzle pressure ratio

R distance from the sensor to the nozzle
centerline

SPL  sound pressure level, dB, in a 25 Hz band

(re 20 pPa)
A, acoustic wavelength of screech
Experimental Details

The experiment was conducted in the
Anechoic Noise Facility (ANF) [40] at the
NASA Langley Research Center. The interior
dimensions of the ANF are 27.5 ft by 27 ft by 24
ft high within the acoustic wedge tips. The
anechoic treatment minimally absorbs 99% of the
incident sound for frequencies in excess of 100
Hz. The ANF is capable of supplying dry
unheated air for continuous operation and the
electronically controlled valves maintain the
nozzle pressure ratio to within 0.3% of the
desired set point. All pressure transducers used
by the flow control system received daily
calibration.

The nozzle assembly consisted of a contoured
transition section connecting a 7.875 inch inside
diameter supply air pipe to a 1.500 inch inside
diameter pipe which then led to the nozzle. The
1.500 inch straight section was 26.000 inches in
length with an outside diameter of 2.250 inches.
The length of this assembly allowed minimal
interference of flanges with the natural jet
entrainment. The nozzle was convergent and
conical (5° convergence angle) with an exhaust
diameter of 1.000 inches. High precision collars
were fabricated which, when placed over the
nozzle exit, would increase the nozzle exit lip

thickness to 0.200 and 0.625 inches as indicated
in Figure 1 (shaded regions). Note that great care
was taken to minimize exterior nozzle assembly
protrusions.

The near field acoustic spectra were obtained
by a single 1/4 inch microphone and surface-
mounted transducers on the nozzle exit lip. The
microphone was located in the nozzle exit plane
and positioned 2 inches from the centerline.
Because the directivity of screech is at shallow
angles to the jet axis, the near field microphone is
located in a position at which the measurement of
screech should easily be obtained for all nozzle
pressure ratios investigated. The included angle
between the microphone and nozzle axes was
approximately 6°. The diameter of the surface-
mounted pressure transducers were 0.095 inches
and their positions are indicated in Figure 2.

The length of the nozzle assembly created a
total pressure loss through the system. Thus,
before the experiment was conducted the total
pressure exiting the nozzle was measured and a
relationship found between the actual total
pressure and the pressure measured in the
stagnation chamber leading to the nozzle
assembly. The fully expanded Mach number, M,
was based on the true nozzle pressure ratio
(actual total pressure divided by the ambient
pressure) by using their isentropic relationship.

Acoustic Results

Narrowband spectra were gathered for each
sensor utilizing a Fast Fourier Transform
analyzer set to a filter bandwidth of 25 Hz and a
maximum frequency of 20 kHz. For the 0.625
inch lip thickness, 44 M, values ranging from
1.04 to 1.90 were tested. Thirty one M, values
ranging from 1.04 to 1.64 were investigated for
the 0.200 inch lip thickness (screech does not
dominate acoustic spectra at high Mach numbers
for thinner lip configurations). The data are
presented by the desired fully expanded Mach
number. Figures 3 through 46 are for the 0.625
inch lip and figures 47 through 77 are for the



0.200 inch lip thickness. Each figure contains all
sensor spectra acquired and indicated using the

respective R/D position.
Presented in figures 78 through 82 are the
normalized acoustic wavelength and the

corresponding sound pressure levels for some of

the dominant screech components. The
wavelength was computed using the ambient
speed of sound. The data are for fundamental
frequencies and not harmonics. Figures 78

through 80 are for the 0.625 inch lip and figures

81 and 82 are for the 0.200 inch lip thickness.

Concluding Remarks

Near field pressure data acquired at the NASA

Langley Research Center are presented for a
convergent conical nozzle operating
underexpanded. Two exit lip thicknesses of
0.200 and 0.625 nozzle diameters were tested.
The fully expanded Mach number range tested

for each lip thickness was limited to the operating

conditions that screech is the dominant noise
source mechanism. Narrowband spectra are

given for a single near field microphone located

in the nozzle exit plane as well as fluctuating
pressure measurements acquired on the nozzle

exit. These measurements may prove useful in

understanding the initial acoustic jet excitation

due to the screech mechanism. Such information
would be valuable in the development of active

screech control methodologies.
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Figure 1. Position of collars (shaded regions) on the nozzle exterior
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Figure 2. Location of surface-mounted transducers on the nozzle exit lip
(dimensions in inches).
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Figure 14. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.27.
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Figure 15. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.29.

19



AR RARAR LA PALANEARAS RARRERAE]

’o lllllllllllllllllllllllilLllLllllLlllll
75 10.0 125 15.0 17.5 20.0
Frequency, kHz

(a) R/D=0.642

LAREERARAS SAARNAAAANRAREN RRRAS RRRA}

90 L1 1 l Uy l L L1 I Ll L} l L1141 l | l Ll L i l i1 il
25 5.0 7.5 100 125 150 175 200
Frequency, kHz

(b) R/D=0.889
160
L
150 I~
140
o o
o1
z.F
m120*:—
1ol
.
100 F
’0:] ST NN NI SN PUUNE S ST FRS U NN
0. 25 5.0 7.5 10.0 125 15.0 17.5 20.0
Frequency, kHz
(c) R/D=2.000

Figure 16. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.31.
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Figure 17. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.33.
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Figure 18. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.35.
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Figure 19. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.37.
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Figure 20. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.39.
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Figure 21. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.41.
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Figure 22. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.42.
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Figure 23. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.44.
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Figure 24. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.46.
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Figure 25. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.48.
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Figure 26. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.50.
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Figure 27. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.52.
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Figure 28. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.54.
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Figure 29. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.56.

33



IRASAS LARRAGARRA RAARA RARAN R

w 1llllllljllllL1llllllllllllJLlllllllJ_l_L
o. 5.0 7. 160 125 (50 175 200
Frequency, kHz

(a) R/D=0.642

IASRAARASAE RANAS RARASRARSE R AN

TYYY
o

'oJlllLlAlllllAl]lllllllllLlLJ_LlliJ.llllJJ._l
50 75 100 125 !50 175 200
Frequency, kHz

(b) R/D=0.889

AASARSANEASANARAAN RAARE RARRS RARS ]

L 14

90 I LIl 1 i l LI L L l LA} 11 i 1.t l 1 131 l
0. ) 75 100 12
Frequency, kHz

(c) R/D=2.000

IVEEWEEE N 1
15.0 12.5 20.0

Figure 30. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.58.
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Figure 31. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.60.
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Figure 32. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.62.
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Figure 33. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.64.
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Figure 35. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.68.
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Figure 37. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.72.
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Figure 38. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.74.
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Figure 39. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.76.
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Figure 40. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.78.
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Figure 41. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.80.
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Figure 42. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.82.
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Figure 43. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.84.
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Figure 44. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.86.
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Figure 45. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.88.
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Figure 46. Narrowband spectra for the 0.625 inch lip thickness nozzle at Mj=1.90.
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Figure 47. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.04.
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Figure 48. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.07.
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Figure 49. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.09.
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Figure 50. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.11.
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Figure 51. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.13.
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Figure 52. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.15.
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Figure 53. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.17.
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Figure 54. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.19.
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Figure 55. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.21.
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Figure 56. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.23.
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Figure 57. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.25.
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Figure 58. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.27.
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Figure 59. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.29.
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Figure 60. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.31.
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Figure 61. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.33.
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Figure 62. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.35.
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Figure 63. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.37.
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Figure 64. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.39.
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Figure 65. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.41.
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Figure 66. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.42.
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Figure 67. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.44.
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Figure 68. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.46.
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Figure 69. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.48.
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Figure 70. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.50.
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Figure 71. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.52.

75



LA RARSE LARASCEARI RARAS RARARR RS

<
(=]
¥
i
.
.
o
-
N
C
-
-
L
"
o
r
o
-
C
b=
C
o
C
C
r

. 100 125 150 175 200
Frequency, kHz

(a) R/D=0.642

MRS RAARASARRS AR LSS RRARS RALAERARAS

NS I TE FUUYE FE GRS NV ST NEwE
7.5

! 100 125 {50 175 200
Frequency, kHz

(b) R/D=2.000

Figure 72. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.54.
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Figure 73. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.56.
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Figure 74. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.58.
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Figure 75. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.60.
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Figure 76. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj=1.62.
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Figure 77. Narrowband spectra for the 0.200 inch lip thickness nozzle at Mj= 1.64
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Figure 78. Dominant screech components for 0.625 inch lip thickness nozzle
at R/D=0.642.
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Figure 79. Dominant screech components for 0.625 inch lip thickness nozzle
at R/D=0.889.
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Figure 80. Dominant screech components for 0.625 inch lip thickness nozzle
at R/D=2.000.
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Figure 81. Dominant screech components for 0.200 inch lip thickness nozzle
at R/D=0.642.
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Figure 82. Dominant screech components for 0.200 inch lip thickness nozzle
at R/D=2.000.
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